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Abstract. We investigate in the high-frequency limit the propagation of focus wavemodes in
uniaxial anisotropic dielectrics. We prove that, as for harmonic plane waves, two sets (ordinary
and extraordinary) of focus wavemodes can propagate in this medium. We discuss some possible
consequences of this result.

1. Introduction

The focus wavemode (FWM) solutions of the wave equation, discovered independently by
Brittingham [1] and Kiselev [2], are in fact a particular class of more general solutions known
to Courant–Hilbert as distortion-free progressing waves [3]. Many works have been devoted to
FWM propagation in isotropic media [4–6]. However, because of the important applications of
anisotropic media in the field of electromagnetic waves, for instance in plasmas, ferrite devices,
travelling wave tubes, laser systems and so on, and because, hopefully, FWM beams could be
used to transport information over large distances, it is necessary to investigate whether and
how FWM propagation takes place in anisotropic media. We start here by considering the
simplest case of a uniaxial anisotropic dielectric.

Choosing coordinates along the principal axes of the permittivity tensor, we define a
uniaxial anisotropic dielectric by the constitutive relations

Dx,y = εEx,y Dz = ηEz B = µH (1)

in which ε andη depend on the frequencyω while µ is a constant scalar. We look for the
solutions of Maxwell equations in the form [3]

Hj = aj exp(iωχ) Dj = bj exp(iωχ) j = 1, 2, 3 (2)

in whichχ is a solution of the characteristic equation withn2 = εµ,m2 = ηµ
m−2{(∂xχ)2 + (∂yχ)

2} + n−2(∂zχ)
2 − c−2(∂tχ)

2 = 0 (3)

while aj andbj are amplitudes to be determined. In these expressions, the indexj takes
values 1, 2, 3, corresponding to the coordinatesx, y, z, respectively.

We first consider the propagation of TE and TM focus wavemodes when the
electromagnetic field does not depend on the coordinatey.
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2. Propagation of TM and TE focus wavemodes

For a TM field, Maxwell equations reduce to

∂zHy = −c−1∂tDx ∂xHy = c−1∂tDz (4a)

∂zEx − ∂xEz = −µc−1∂tHy. (4b)

We assume that the componentHy is the scalar focus wavemode [1, 2]

Hy = g−1/2ψ ψ = exp(iωχ) (5)

in whichχ is the solution of the two-dimensional (2D) characteristic equation

m−2(∂xχ)
2 + n−2(∂zχ)

2 − c−2(∂tχ)
2 = 0 (6a)

while g is determined so thatHy is a solution of the 2D wave equation

(m−2∂2
x + n−2∂2

z − c−2∂2
t )Hy = 0. (6b)

In addition, as previously stated, we are interested in the high-frequency solutions of
equations (4), that is, we assumeω (which is in fact a wavenumber) is very large so that,
for any first derivative of an expressionAψ , we may neglect(∂A)ψ with respect to iωA(∂χ)ψ
and write

∂(Aψ) = iω{A∂χψ + 0(ω−1)}. (7)

2.1. Propagation along the symmetry axis of the anisotropic dielectric

One checks easily that in this case equations (6a, b) are satisfied with

χ = ct − nz−m2x2g−1 g = ct + a + nz (8)

and a simple calculation gives

∂xχ = −2mxg−1 ∂zχ = −n(1−m2x2g−2) c−1∂tχ = 1 +m2x2g−2. (9)

Using (7) (that is, neglecting∂g−1/2) and (9), we get

∂xHy = −iω{2m2xg−1Hy + 0(ω−1)}
∂zHy = −iω{n(1−m2x2g−2)Hy + 0(ω−1)} (10a)

c−1∂tHy = iω{(1 +m2x2g−2)Hy + 0(ω−1)). (10b)

We now look for the solutions of equations (4a) in the formDx,z = fx,zψ in which the
amplitudesfx,z are to be determined. Using (7) (withA = fx,z) and (9) gives

c−1∂tDx,z = iω{(1 +m2x2g−2)fx,zy + 0(ω−1)}. (11)

Substituting (10a) and (11) into (4a) we get at once

fx = ng−1/2(g2 −m2x2)(g2 +m2x2)−1

fz = −2m2xg1/2(g2 +m2x2)−1 (12)

so that withεx = ε, εz = η, thex, z-components of the electric field are

Ex,z = (εx,z)−1fx,zψ = bx,zHy (13)

bx = (µ/ε)1/2(g2 −m2x2)(g2 +m2x2)−1

bz = −2µgz(g2 +m2x2)−1. (13a)

One checks easily that with (5) and (13), equation (4b) is satisfied. We have indeed

∂zEx = iω{bx∂zχHy + 0(ω−1)} (14a)

= − iω{n(1−m2x2g−2)bxHy + 0(ω−1)} (14b)



High-frequency focus wavemodes in uniaxial anisotropic dielectrics2699

and using (13a)

∂zEx = −iω{µg2(g2 −m2x2)2(g2 +m2x2)−1Hy + 0(ω−1)}. (14c)

Similarly

∂xEz = iω{bz∂xcHy + 0(ω−1)} (15a)

= − iω{2m2xg−1bzHy + 0(ω−1)} (15b)

∂xEz = iω{4µm2x2(g2 +m2x2)−1Hy + 0(ω−1)}. (15c)

From (10b), (14c) and (15c) we get equation (4b).

2.2. Propagation in an arbitrary direction

We now assume that the focus wavemode propagates in a direction making the angleu with
thez-axis. In this case

χ = ct − Z − g−1X2 g = ct + a +Z (16)

Z = nz cosu +mx sinu X = mx cosu− nz sinu. (16a)

Then

∂xχ = −m[sinu(1− g−2X2) + 2g−1 cosuX]

∂zχ = −n[cosu(1− g−2X2)− 2g−1 sinuX] (17a)

c−1∂tc = 1 +g−2X2. (17b)

So, still using (7)

∂xHy = −iω{m[sinu(1− g−2X2) + 2g−1 cosuX]Hy + 0(ω−1)}
∂zHy = −iω{n[cosu(1− g−2X2)− 2g−1 sinuX]Hy + 0(ω−1)} (18a)

c−1∂tHy = iω{(1 +g−2X2)Hy + 0(ω−1)}. (18b)

Similarly to (11) withX2 taking the place ofm2x2

c−1∂tDx,z = iω{(1 +g−2X2)fx,zψ + 0(ω−1)}. (19)

Substituting (18a) and (19) into (4a) we easily get

fx = ng−1/2(g2 +X2)−1[cosu(g2 −X2)− 2 sinugX]

fz = −mg−1/2(g2 +X2)−1[sinu(g2 −X2) + 2 cosugX] (20)

and the amplitudesbx,z in (13) become

bx = (µ/ε)1/2(g2 +X2)−1[cosu(g2 −X2)− 2 sinugX]

bz = (µ/η)1/2(g2 +X2)−1[sinu(g2 −X2) + 2 cosugX]. (21)

In this case also one easily checks that equation (4b) is satisfied since equations (14a), (15a)
become

∂zEx = iω{ng−2[cosu(g2 −X2)− 2 sinugX]bxHy + 0(ω−1)}
∂xEz = −iω{mg−2[sinu(g2 −X2) + 2 cosugX]bzHy + 0(ω−1)} (22a)

and using (21) (0(ω−1) understood)

∂zEx = −iω{µg−2(g2 +X2)−1[cos2 u(g2 −X2)2 + 4 sin2 ug2X2

−2 sin 2ugX(g2 −X2)]Hy}
∂xEz = iω{µg−2(g2 +X2)−1[sin2 u(g2 −X2)2 + 4 cos2 ug2X2

+2 sin 2ugX(g2 −X2)]Hy} (22b)

so thatµ−1(∂xEz − ∂zEx) = (18b) which is equation (4b).
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To sum up, the electromagnetic TM focus wavemode propagating in theu-direction of
the uniaxial anisotropic dielectric is

Ex,y = bx,yHy Hy = g−1 exp(iωχ) (23)

with bx,z given by (21),g andχ by (16).

Remark. The situation is different for TE focus wavemodes since Maxwell equations are

∂zDy = n2c−1∂tHx ∂xDy = n2c−1∂tHz (24a)

∂zHx − ∂xHz = c−1∂tDy. (24b)

We look for the solutions of equations (24) in the formDy = g−1 exp(iωχ◦) with g, χ◦ also
given by (13) but withm = n in (13a) whileHx,z = ax,zDy ; still using (7), one could easily
obtainax,z. Anticipating on the results to be proved in the next section, one could name TM
and TE focus wavemodes extraordinary and ordinary waves, respectively.

3. Propagation of an arbitrary focus wavemode

We write Maxwell equations

∂yHz − ∂zHy = c−1∂tDx m−2∂yDz − n−2∂zDy = −c−1∂tHx

∂zHx − ∂xHz = c−1∂tDy n−2∂zDx −m−2∂xDz = −c−1∂tHy

∂xHy − ∂yHx = c−1∂tDz n−2∂xDy − n−2∂yDx = −c−1∂tHx. (25)

As stated in the introduction, we look for the solutions of equations (25) in the form (2). We
still use the high-frequency approximation (7), but from now on for simplification we no longer
write 0(ω−1) and we introduce the functions

wj = ∂jχ/c−1∂tχ ∂j = ∂/∂xj j = 1, 2, 3. (26)

According to equation (3), they satisfy the relation

m−2(w2
x +w2

y) + n−2w2
z − 1= 0. (26a)

Then, substituting (2) into (25), using (7) and (24), the Maxwell equations become

wyaz − wzay − bx = 0 m−2wybz − n−2wzby + ax = 0

wzax − wxaz − by = 0 n−2wzbx −m−2wxbz + ay = 0

wxay − wyax − bz = 0 n−2wxby − n−2wybx + az = 0 (27)

which is an homogeneous system of six equations for the six unknownsaj , bj , with a non-
trivial solution only if its determinant is zero. This determinant given in appendix A can be
changed by elementary transformations into the equivalent determinant

M =
[−1 +n−2(w2

x +w2
z ) −n−2wxwy −m−2wzwx

−n−2wxwy −1 +n−2(w2
x +w2

z ) −m−2wzwy
−n−2wxwz −n−2wywz −1 +m−2(w2

x +w2
z )

]
. (28)

Using (26a), the elementM33 of (28) may be replaced by−n−2w2
z so that

M = −n−2w2
z

−1 +n−2(w2
y +w2

z ) −n−2wywx −m−2wx

−n−2wxwy −1 +n−2(w2
x +w2

z ) −m−2wy
wx wy 1

 (29)

and we prove in appendix B thatM = 0, so the system (26) always has a non-trivial solution.
Let us, for instance, consider the following solution of equation (3)

χ = ct − nz−m2r2g−1 g = ct + a + nz r2 = x2 + y2. (30)
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According to (27) we may assume that one arbitrary component of the electromagnetic field
(sayDz) is a scalar FWM solution of the wave equation

{m−2(∂2
x + ∂2

y ) + n−2∂2
z − c−2∂2

t }Dz = 0. (31)

Then [1, 2], taking into account (30)

Dz = g−1 exp(iωχ) (32)

(note that the amplitude ofDz is g−1 instead ofg−1/2 as in (5), the reason of this difference
will be discussed elsewhere). We get from (30) in the high-frequency approximation

∂xχ = −2m2xg−1 ∂yχ = −2m2yg−1

∂zχ = −n(1−m2r2g−2) c−1∂tχ = 1 +m2r2g−2 (33)

so that according to (26)

wx = −2m2xg(g2 +m2r2)−1

wy = −2m2yg(g2 +m2r2)−1

wz = −n(g2 −m2r2)(g2 +m2r2)−1. (34)

Then, substituting (34) into (27) will supplyaj , bj , in terms of the amplitudea3 = g−1 ofDz.
We refrain from making this simple but rather long calculation.

Let us now inquire what happens toχ if we note thatχ◦ is a solution of the characteristic
equation that one would meet in an isotropic medium

n−2{(∂xχ◦)2 + (∂yχ
◦)2 + (∂zχ

◦)2} − c−2(∂tχ
◦)2 = 0 (35)

so that relation (26a) (for simplification, we writew for w◦) is changed into

n−2(w2
x +w2

y +w2
z )− 1= 0. (35a)

Then, using (35a) in the elementsM11 andM22 of (28), the determinantM becomes

M =
 −n−2w2

x −n−2wxwy −m−2wzwx
−n−2wxwy −n−2w2

y −m−2wzwy

−n−2wxwz −n−2wywz −1 +m−2(w2
x +w2

y)


= w2

xw
2
y

[
n−2 n−2 m−2wz
n−2 n−2 m−2wz
−n−2wz −n−2wz −1 +m−2(w2

x +w2
y)

]
(36)

so thatM = 0: in this case also, the system (27) has a non-trivial solution. This means that in
addition to (2) a second set of focus wavemodes

H ◦j = a◦j exp(iωχ◦) D◦j = b◦j exp(iωχ◦) (37)

with χ◦ a solution of the characteristic equation (35) can propagate in a uniaxial anisotropic
dielectric. In agreement with the terminology used for harmonic plane waves [7–9], we name
as extraordinary and ordinary focus wavemodes the solutions (2) and (37) whose particular
case is supplied by the TM and TE components of the electromagnetic field.

4. Discussion

The similarity between harmonic plane wave (HPW) and high-frequency FWM propagation in
uniaxial anisotropic dielectrics is striking but natural from a mathematical point of view since,
as proved by Courant–Hilbert [3], HPW and FWM are undistorted progressing waves with the
typical property that their phase is a solution of the characteristic equation. The exact form of
the phase and of the attenuation factor (1 for HPW,g−1 for FWM) is of secondary importance:
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HPW and FWM propagate similarly in all space for−∞ < t <∞. So, no physical wave can
be distortion-freestricto sensuand one has to think of physical HPW and FWM as acceptable
approximations in some bounded region of spacetime of mathematical HPW and FWM.
Naturally the similarity between these waves suggests further works: reflection and refraction
of FWM at surfaces of anisotropic dielectrics, the way that ordinary and extraordinary FWM
are excited, the double refraction phenomenon and FWM propagation in biaxial anisotropic
dielectrics.

All the results obtained in this work are valid only for high frequencies. Calculations
become intricate at lower frequencies. for instance, for a TM-FWM we get instead of (10a)
and (11)

∂zHy = −n{g−1 + iω(1−m2x2g−2)}Hy
c−1∂tDx = {c−1∂tfx + iω(1−m2x2g−2)}ψ. (38)

Substituting (38) into the first equation (4a) gives the first-order differential equation

c−1∂tfx + iω(1 +m2x2g−2)fx = ng−3/2 + iωng−1/2(1−m2x2g−2) (39)

and looking for the solution of this equation is not an easy task.
In order for FWM to become a practical tool, for instance to transmit information at

large distances as stated in the introduction, one must be able to generate approximate FWM.
Many suggestions have been made in the past [10–12] but the most attractive one is that by
Ziolkowski et al [13] who in addition have been able to check experimentally in acoustics the
performances of their approximate FWM [14, 15]. No such experiment seems to have been
made in electromagnetism.

Appendix A

The determinant of the system (27) is
0 −wz wy −1 0 0
wz 0 −wx 0 −1 0
−wy wx 0 0 0 −1

1 0 0 0 −n−2wz m−2wy
0 1 0 n−2wz 0 −m−2wx
0 0 1 −n−2wy n−2wx 0

 .
Subtracting the fourth line multiplied by−wz (respectively bywy) from the second
(respectively third) line changes into zero the first two elements of the first column. Using the
same technique in the second and third columns transforms the previous determinant into the
determinant (28).

Appendix B

Leaving aside the factor−n−2w2
z and expanding (29) with respect to the elements of the third

line give, withw2 = w2
x +w2

y +w2
z

M = [1− n−2(w2
y +w2

z )][1 − n−2(w2
x +w2

z )] − n−4w2
xw

2
y

−wy [m−2wy −m−2n−2wyw
2] + wx [−m−2wx +m−2n−2wxw

2]

= 1− n−2(w2 +w2
z ) + n−4w2

zw
2 −m−2(w2

x +w2
y)(1− n2w2).

Using relation (26a) in the last term of this expression we get

M = 1− n−2(w2 +w2
z ) + n−4w2

zw
2 + (n−2w2

z − 1)(1− n−2w2) = 0.
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